CAMPUS: Goi	abeiras							
CURSO: Enge	nharia Mecâr	nica						
HABILITAÇÃO: Engenheiro Mecânico								
OPÇÃO:								
DEPARTAMENTO RESPONSÁVEL: Departamento de Engenharia Mecânica								
IDENTIFICAÇÃO								
CÓDIGO	DISCIPI	LINA OU E	STÁGIO	PERIODIZAÇÃ	O IDEAL			
MCA 08706	Mecâ	nica dos Flu	idos I	4°.				
OBRIG./OPT	PRÉ/O	CO/REQUIS	SITOS	ANUAL/SEM.				
•								
Obrig.	MAT09	582 e MCA	.08767	Semestral				
CRÉDITO	CARGA	DIST	RIBUIÇÃO D	A CARGA HORÁRIA				
	HORÁRIA	TEÓRIC	EXERCÍCI	LABORATÓRI	OUTRA			
	TOTAL	A	0	0				
04	60	60	00	00	00			

NÚMERO MÁXIMO DE ALUNOS POR TURMA AULAS DE

LABORATÓRIO

00

OUTRA

00

OBJETIVOS (Ao término da disciplina o aluno deverá ser capaz de:)

- Identificar propriedades físicas dos fluidos;

AULAS DE

EXERCÍCI

0 00

- Modelar problemas físicos utilizando conceitos de mecânica dos fluidos;
- Aplicar as equações básicas integrais para solução de problemas de mecânica dos fluidos;
- Avaliar comportamento de campo de pressão em superfícies submersas e na atmosfera.
- Aplicar adimensionalização aos problemas estudados e reconhecer os principais parâmetros adimensionais.

CONTEÚDO PROGRAMÁTICO (Título e descriminação das Unidades)

3.1 INTRODUÇÃO

AULAS

TEÓRICAS

50

- 3.1.1 Apresentação da disciplina e suas aplicabilidades;
- 3.1.2 Métodos de análise: sistema e volume de controle; enfoque diferencial e integral; Métodos de descrição;
- 3.1.3 Conceitos básicos e definições;
- 3.1.4 Sistema de unidades:

- 3.2 CONCEITOS FUNDAMENTAIS (AP1)
- 3.2.1 Meio contínuo;
- 3.2.2 Campo de velocidade: escoamentos uni, bi e tridimensionais; Linhas;
- 3.2.3 Campo de tensões;
- 3.2.4 Deformação e taxa de deformação;
- 3.2.5 Fluidos newtonianos e não newtonianos;
- 3.2.6 Propriedades: Massa específica; Viscosidade e viscosimetria; Pressão; Temperatura;
- 3.2.7 Descrição e classificação dos movimentos dos fluidos: fluidos viscosos e não viscosos; escoamentos laminar e turbulento; escoamentos compressíveis e incompressíveis; escoamentos internos e externos;
- 3.2.8 Resolução de problemas;
- 3.3 ESTÁTICA DOS FLUIDOS (Ap2; Ap3)
- 3.3.1 Equação básica da estática dos fluidos;
- 3.3.2 Variação de pressão em um fluido estático;
- 3.3.3 Atmosfera padrão (aero estática);
- 3.3.4 Forças sobre superfícies submersas: superfícies planas e curvas;
- 3.3.5 Empuxo e estabilidade;
- 3.36 Resoluções de problemas;
- 3.4 EQUAÇÕES BÁSICAS NA FORMA INTEGRAL (Ap4; Ap5; Ap6)
- 3.4.1 Sistema: conservação de massa; Segunda lei de Newton; Quantidade de movimento angular; Primeira e segunda lei da termodinâmica;
- 3.4.2 A formulação para volume de controle:
 - Conservação de massa;
 - Quantidade de movimento para um volume de controle inercial;
- Quantidade de movimento para um volume de controle movendo-se a velocidade constante;
- Quantidade de movimento para um volume de controle sob aceleração retilínea:
 - A primeira lei da termodinâmica;
 - A segunda lei da termodinâmica;
- 3.4.3 Resolução de problemas;
- 3.5 ANÁLISE DIMENSIONAL E SEMELHANÇA (Ap7)
- 3.5.1 O teorema dos PI de Buckingham;
- 3.5.2 Grupos adimensionais de importância na mecânica dos fluidos
- 3.5.3 Semelhança de escoamentos e estudos em modelos
- 3.5.4 Semelhança incompleta
- 3.5.5 Resolução de problemas;

BIBLIOGRAFIA BÁSICA

- FOX, R.W., PRITCHARD, P.J & MCDONALD, A.T., Introdução à Mecânica dos Fluidos, 8° Edição, LTC, 2014.
- ÇENGEL, Y. A. & CIMBALA, J.M., **Mecânica dos Fluidos Fundamentos e Aplicações**. McGrawHill, 2007.
- BIRD, R. Byron & STEWART, Warren E.. **Fenômenos de transporte**. Rio de Janeiro: LTC, 2004.

Bibliografia Complementar:

- BASTOS, Francisco de Assis A. **Problemas de mecânica dos fluidos**. Rio de Janeiro: Guanabara Dois, 1983.
- BRUNETTI, Franco. Mecânica dos fluidos. São Paulo, SP: Pearson, 2008.
- PITTS, Donald R., SISSOM, Leighton E.. **Fenômenos de transporte: transmissão de calor, mecânica dos fluidos e transferência de massa**. São Paulo: McGraw-Hill, 1981.
- POTTER, Merle C.. **Mecânica dos fluidos**. São Paulo: Thomson, 2004.
- MASSEY, B. S.. **Mecânica dos fluidos**. Lisboa: Fundação Calouste Gulbenkian, 2002.

CRITÉRIOS DE AVALIAÇÃO DA APRENDIZAGEM

Aplicação de 5 a 6 avaliações de aprendizagem (AP1; AP2; AP3; AP4; AP5; AP6);

 $M\'{e}dia~Parcial = \sum (AP_i)/Num_avalia\~{c}\~{o}es$

Datas das avaliações:

As avaliações serão comunicadas aos alunos com uma semana de antecedência a cada marco de conclusão de conteúdo. As avaliações poderão ser cumulativas no que diz respeito aos conceitos.

Fica previamente combinado que a prova final (PF) será no primeiro dia de aula do período de provas finais no horário de aula.

IIIA CARACTARIZAM	ac linidadec doc	nrogramae de encinol
iue caracterizarii	as unidades dos	programas de ensino)

Introdução; conceitos fundamentais; estática dos fluidos; equações básicas na forma integral para um volume de controle; introdução à análise diferencial dos movimentos dos fluidos.

ASSINATURA (S) DO(S) RESPONSÁVEL(EIS)	

Fonte: http://www.prograd.ufes.br/cam_grad/cam_grad_index.html