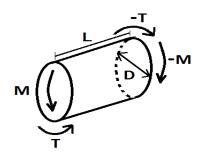


PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA CENTRO TECNOLÓGICO PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

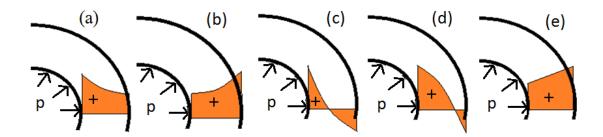
CANDID	ATO:							NOTA:	
	PR	OVA DE	SELEÇÂ	O DOUT	ORADO	PPGEM U	IFES - 202	20/01	
			CIÊNCI	AS MEC <i>Ā</i>	ÀNICAS	- SÓLIDO	S		
Preench cada qu	na a tabel estão. Sã	a de res _l o 6 quest	postas a ões com	baixo con o mesmo	n a letra peso, to	correspor otalizando	ndente à re 10 pontos	esposta co	rreta de
			F	OLHA DE	E RESPO	STAS			
	Questã	ăo i	1	2	3	4	5	6	
	Respos	ita							
			======				======	=======	====
Para lev	ar para c	asa (gaba	arito):						
1	2	3	4	5	6				

Mecânica dos Corpos Rígidos / Mecânica dos Sólidos

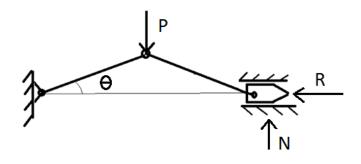
1. Considere o segmento de uma árvore de seção circular maciça sujeita a esforços combinados de flexão pura (M) e torção uniforme (T), assinalados esquematicamente na figura. Sejam D o diâmetro da árvore e L o seu comprimento. As tensões máximas de flexão (σ) e torção (τ) são dadas, em módulo, respectivamente por:



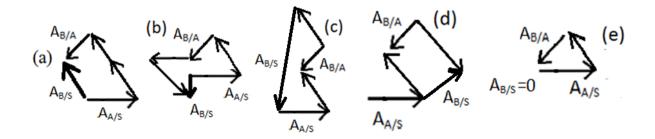
(b)
$$16M/\pi D^3 e 8T/\pi D^3$$

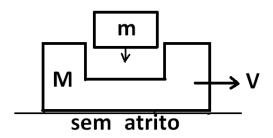

(c)
$$64M/\pi D^3 e 32T/\pi D^3$$

(d)
$$ML/\pi D^2$$
 e $12TL/\pi D^2$


(e)
$$2ML/\pi D^2$$
 e $12TL/\pi D^2$

2. Considere um cilindro isotrópico e homogêneo, de paredes grossas com espessura t, submetido somente à pressão interna uniforme p de um gás. Assinale o gráfico que, esquematicamente, melhor representa a amplitude e a distribuição das tensões circunferenciais ou angulares σ_{θ} ao longo da espessura do cilindro.


3. No dispositivo mostrado a seguir, constituído por barras rígidas articuladas, o valor em módulo da reação horizontal R, capaz de equilibrar estaticamente o sistema, uma vez que nele atua uma carga externa vertical P, é dado por:


- a) $R=[Ptang(\theta)]/2$
- b) $R=[Psen(\theta)]/2$
- c) $R=[Pcos(\theta)]/2$
- d) $R=[Pcos(\theta)sen(\theta)]/2$
- e) $R=[(Pcotang(\theta))]/2$

4. A figura a seguir mostra um carrinho A que se move horizontalmente sobre o solo S com velocidade $V_{A/S}$ e aceleração $A_{A/S}$. Sobre a sua superfície superior, curvilínea, um bloco B desliza com velocidade relativa $V_{B/A}$ e aceleração tangencial relativa $A_{B/A}$, conhecidas e produzidas pelas condições iniciais do lançamento e pela ação da gravidade g. A soma vetorial que melhor representa o cálculo da aceleração total do bloco com relação a um referencial fixo no solo S (denominada $A_{B/S}$) considerando os diferentes tipos de aceleração envolvidos no problema é dada por:

- 5. Assinale a alternativa errada:
- a) Nas vigas-parede, onde a altura da viga é de mesma ordem do seu comprimento, as tensões produzidas pelos esforços cisalhantes podem ser até mais importantes do que as tensões normais devido à flexão.
- b) Nas vigas largas, onde a altura da viga é menor do que sua espessura, ambas bem menores do que o comprimento, a rigidez flexional é maior do que nas vigas padrão.
- c) Nas vigas de igual resistência, muito utilizadas em molas planas e dentes de engrenagens, suas dimensões são ajustadas de modo produzir tensões normais de flexão uniformes ao longo do comprimento.
- d) Nas vigas clássicas sob flexão pura, os esforços cisalhantes são máximos na linha neutra.
- e) Nas vigas clássicas, o comprimento do vão é muito maior do que a altura, que por sua vez é muito maior do que a espessura.
- 6. O bloco de massa M desliza sem atrito com velocidade constante V num plano horizontal e, num dado momento, uma massa m cai subitamente alojando-se em seu interior, conforme ilustra a figura a seguir. Assinale a razão entre a energia cinética do bloco antes de receber a massa m e a enérgica cinética do conjunto, depois do alojamento da massa m.

- a) 1+m/M
- b) 1-m/M
- c) 1+M/m
- d) 1-M/m
- e) $1-(M/m)^2$