

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLOGICO PROGRAMA DE PÓS-GRADUAÇÃO EM EMGENHARIA MECÂNICA

CANDIDATO:			NOTA:
	MEOTEMPO ()	DOUTODADO (1
	MESTRADO ()	DOUTORADO ()

PROVA DE SELEÇÃO DO PPGEM DA UFES DE 2018

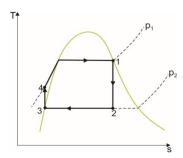
CIÊNCIAS MECÂNICAS

Termodinâmica - Transferência de Calor - Mecânica dos Fluidos

Preencha a tabela de respostas abaixo com a letra correspondente à resposta correta de cada questão. São 30 questões, sendo que **as primeiras 20 valem 0,25 pontos**, cada. **As demais 10 valem 0,5 pontos**, cada.

Questão	Resposta
(Número)	(Letra)
01	
02	
03	
04	
05	
06	
07	
08	
09	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

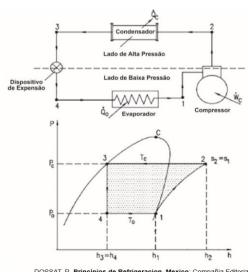
Questão	Resposta
(Número)	(Letra)
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	


01 – [51 (EPE 2014)]: Um escoamento de um fluido é uniforme quando:
(A) o fluido for incompressível.
(B) as condições não variarem com o tempo.
(C) a vazão, em um tubo de seção constante, também for constante.
(D) a variação da velocidade em relação ao tempo for nula, em cada direção.
(E) a variação da velocidade em relação a qualquer direção for nula, em cada instante.
02 – [28 (EPE 2014)]: Na ausência dos dados de propriedades do líquido comprimido, tais como a energia interna e o volume específico, é muito comum tratá-lo como:
(A) líquido saturado à mesma temperatura.
(B) vapor saturado à mesma temperatura.
(C) líquido saturado à mesma pressão.
(D) vapor saturado à mesma pressão.
(E) mistura de líquido e vapor saturados à mesma pressão.
03 – [29 (EPE 2014)]: Em um determinado problema de engenharia, ficou caracterizado, por meio de um adimensional, um aumento da transferência de calor, através de uma camada de fluido, como resultado da convecção em relação à condução do mesmo fluido em toda a camada. Tal adimensional corresponde ao número de:
(A) Reynolds.
(B) Prandtl.
(C) Grashof.
(D) Rayleigh.
(E) Nusselt.
04 – [30 (EPE 2014)]: Tendo a teoria cinética dos gases por base, a condutividade térmica dos gases:
(A) aumenta com o aumento da temperatura e independe da variação da massa molar.
(B) aumenta com o aumento da temperatura e com o aumento da massa molar.
(C) aumenta com o aumento da temperatura e diminui com o aumento da massa molar.
(D) diminui com o aumento da temperatura e independe da variação da massa molar.
(E) diminui com o aumento da temperatura e com o aumento da massa molar.
05 – [31 (EPE 2014)]: Considerando-se as grandezas temperatura, pressão e volume, os calores específicos de substâncias incompressíveis, c, são funções APENAS:
(A) da temperatura, ou seja, $c = f(T)$.
(B) da pressão, ou seja, $c = f(p)$.
(C) do volume, ou seja, $c = f(v)$.
(D) da temperatura e da pressão, ou seja, $c = f(T,p)$.
(E) do volume e da pressão, ou seja, $c = f(v,p)$.

- 06 [32 (EPE 2014)]: O conceito de corpo negro é muito utilizado quando se trabalha com radiação. Tal corpo, cuja temperatura termodinâmica da superfície é T,:
- (A) é considerado um perfeito absorvedor e emite radiação a uma taxa máxima proporcional a T^2 , sendo também um perfeito emissor.
- (B) é considerado um perfeito absorvedor e emite radiação a uma taxa máxima proporcional a T⁴, sendo também um perfeito emissor.
- (C) é considerado um perfeito absorvedor e emite radiação a uma taxa máxima proporcional a T^3 , mas não é um perfeito emissor.
- (D) absorve, apenas, parte da radiação incidente sobre ele e emite radiação a uma taxa máxima proporcional a T^2 , sendo também um perfeito emissor.
- (E) absorve, apenas, parte da radiação incidente sobre ele e emite radiação a uma taxa máxima proporcional a T^4 , sendo também um perfeito emissor.
- 07 [35 (EPE 2014)]: Em uma instalação termoelétrica a vapor, considerando-se um ciclo ideal, o processo termodinâmico realizado pela turbina é de:
- (A) expansão adiabática reversível.
- (B) expansão adiabática irreversível.
- (C) contração adiabática reversível.
- (D) contração adiabática irreversível.
- (E) transferência de calor a pressão constante.
- 08 [42 (EPE 2014)]: O ciclo padrão ar ideal para análise de uma turbina a gás simples é o ciclo de:
- (A) Carnot.
- (B) Diesel.
- (C) Otto.
- (D) Rankine.
- (E) Brayton.
- 09 [43 (EPE 2014)]: A eficiência de um ciclo de Rankine pode ser aumentada se a(o):
- (A) pressão na saída da turbina for aumentada.
- (B) pressão durante a adição de calor for reduzida.
- (C) temperatura de rejeição de calor sofrer um aumento significativo.
- (D) pressão de saída do gerador de vapor sofrer uma redução.
- (E) vapor que sai do gerador de vapor for superaquecido.
- 10 [44 (EPE 2014)]: Na análise de motores de combustão interna são usados ciclos termodinâmicos fechados que se aproximam dos ciclos abertos reais. O ciclo padrão ar é o mais utilizado e baseia-se em:
- (A) todos os processos serem internamente irreversíveis.
- (B) uma massa variável de ar ser o fluido de trabalho em todo o ciclo.
- (C) o calor específico do ar ser variável.
- (D) o ar ser utilizado como comburente.
- (E) o ciclo ser completado pela troca de calor com o meio.

(A) Reynolds.	•
(B) Mach.	
(C) Froude.	
(D) Weber.	
(E) Prandtl.	
- '	NADE 2005)]: "O ciclo padrão de ar Diesel é composto por quatro processos termodinâmicos" PORQUE "Na ca, a substância de trabalho de qualquer ciclo padrão sofre processos.". Analisando essas afirmações, conclui-se que:
(A) as duas a	firmações são verdadeiras e a segunda justifica a primeira.
(B) as duas a	firmações são verdadeiras e a segunda não justifica a primeira.
(C) a primeir	a afirmação é verdadeira e a segunda é falsa.
(D) a primeir	ra afirmação é falsa e a segunda é verdadeira.
(E) as duas a	firmações são falsas.
	NADE 2008)]: Considere uma parede plana submetida a um processo de condução unidimensional em regime com condutividade térmica e geração de calor constantes.
	calor por unidade de área nessa parede é constante ao longo da espessura da mesma." PORQUE "A distribuição de na espessura dessa parede é linear.". Analisando essas afirmações, conclui-se que:
(A) as duas a	firmações são verdadeiras, e a segunda justifica a primeira.
(B) as duas a	firmações são verdadeiras, e a segunda não justifica a primeira.
(C) a primeir	ra afirmação é verdadeira, e a segunda é falsa.
(D) a primeir	ra afirmação é falsa, e a segunda é verdadeira.
(E) as duas a	firmações são falsas.
	[ADE 2011]]: Considere uma turbina a gás ideal simples, que opera em modo fechado, analisada por meio do ciclo Brayton. Sob essas condições, avalie as afirmações que se seguem:
I.	De acordo com as hipóteses de uma análise de ar-padrão, o aumento de temperatura que seria obtido no processo de combustão é alcançado por transferência de calor de uma fonte externa para o fluido de trabalho. Esse fluido de trabalho é considerado o ar como gás ideal.
II.	O ar, ao passar pela turbina, sairia em uma condição de temperatura mais alta do que quando foi admitido ao compressor. No ciclo de ar-padrão Brayton, idealiza-se um trocador de calor entre a turbina e o compressor, para rejeição de calor, a fim de reduzir a temperatura na saída da turbina aos níveis da entrada no compressor.
III.	Um ciclo de ar-padrão Brayton é composto por quatro equipamentos: um compressor que eleva a pressão do ar para sua entrada na turbina, um trocador de calor que é responsável pelo aumento da temperatura para a entrada do ar na turbina, uma turbina e outro trocador de calor que reduz a temperatura do ar na saída da turbina, aos mesmos níveis de sua entrada no compressor.
É correto o q	ue se afirma em:
(A) I, apenas	
(B) II, apena.	s.
(C) I e III, ap	penas.
(D) II e III, a	penas.
(E) I, II e III.	

11 – [46 (EPE 2014)]: O comportamento do escoamento não uniforme de um fluido incompressível em um canal com largura e profundidades variáveis, é determinado pela equação da energia onde o parâmetro adimensional a ser considerado é o número de:

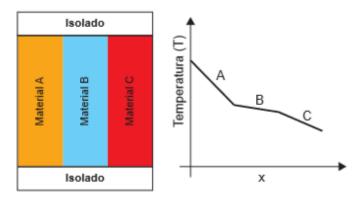

14 – [29 (ENADE 2008)]: Uma central de potência a vapor opera segundo um Ciclo de Rankine, conforme a figura abaixo. Desejase aumentar o rendimento térmico do ciclo sem que haja diminuição do título do fluido que deixa a turbina, a fim de evitar a erosão das palhetas.

Analisando o diagrama temperatura-entropia relativo ao Ciclo de Rankine, acima conclui-se que a ação a ser tomada é:

- (A) aumentar a pressão na caldeira, mantendo a pressão do condensador constante.
- (B) aumentar a temperatura na seção de saída da turbina, mantendo a pressão da caldeira constante.
- (C) reduzir a pressão no condensador, mantendo a pressão da caldeira constante.
- (D) reduzir a temperatura na entrada da bomba, mantendo a pressão da caldeira constante.
- (E) superaquecer o vapor na caldeira, mantendo a pressão desta e a do condensador constantes.

16 – [15 (ENADE 2011)]: A figura abaixo representa um sistema de refrigeração por compressão de vapor com seus principais componentes e seu respectivo ciclo teórico, construído sobre um diagrama de Mollier (P-h).

DOSSAT, R. **Princípios de Refrigeracion. Mexico**: Compañia Editoria Continental S/A, 1980,p. 130 (com adaptações)


Observando os processos termodinâmicos que constituem o ciclo teórico, analise as afirmações que se seguem:

- 1-2 é um processo adiabático e reversível com aumento de temperatura e pressão.
- II. 2-3 é um processo isotérmico com pressão constante.
- III. 3-4 é um processo isentálpico com expansão reversível.

É correto o que se afirma em:

- (A) I, apenas.
- (B) II, apenas.
- (C) I e III, apenas.
- (D) II e III, apenas.
- (E) I, II e III.

17 – [34 (ENADE 2014)]: Uma placa é fabricada com três lâminas de mesma espessura e materiais diferentes. Um ensaio foi realizado em regime permanente, sem geração de calor, para verificar qual dos materiais possui maior condutividade térmica. O gráfico do comportamento da temperatura nesse experimento é apresentado a seguir.

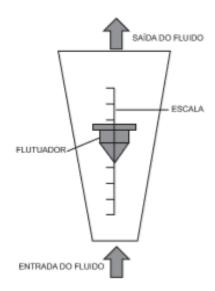
Com base nesta situação, avalie as seguintes asserções e a relação proposta entre elas.

- No experimento, constata-se que, entre os três materiais da placa, a maior e a menor condutividade térmica pertencem, respectivamente, ao material B e ao material A POROUE
- II. Como o fluxo de calor no experimento é unidimensional e constante, quanto maior for o valor de dT/dx, maior será a sua condutividade térmica.

A respeito destas asserções, assinale a opção correta:

- (A) As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I.
- (B) As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.
- (C) A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
- (D) A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
- (E) As asserções I e II são proposições falsas.

 $18 - [13 \ (ENADE \ 2011)]$: O coeficiente de arrasto de um disco com um escoamento normal a uma de suas faces é Cd = 1,17, para valores do número de Reynolds maiores do que 1 000.


FOX, R. W., MCDONALD, A. T., PRITCHARD, P. Introduction to Fluid Mechanics. 6. ed. New York: Willey International, 2004. p. 787 (com adaptações)

Em um experimento tem-se água escoando normal à face de um disco. A força de arraste da água no disco é de alguma forma determinada. Repete-se o experimento com duas modificações, utiliza-se ar como fluido e altera-se a velocidade do escoamento para garantir que nos dois experimentos o número de Reynolds seja o mesmo e superior a 1 000. A força de arraste do ar no disco é, também, de alguma forma determinada. Considere a água com $\rho = 1000 \text{ kg/m}^3 \text{ e } \mu = 0,001 \text{ Pa.s.}$ e considere o ar com $\rho = 1 \text{ kg/m}^3 \text{ e } \mu = 0,00001 \text{ Pa.s.}$

Com relação às forças que atuam nesse experimento, é correto afirmar que:

- (A) a força de arrasto será a mesma nos dois experimentos, pois o número de Reynolds e o coeficiente de arrasto são os mesmos; e a força de empuxo será maior no experimento com água.
- (B) a força de arrasto será maior no experimento com água, no qual a velocidade do fluido é menor; e a força de empuxo é maior no experimento com água.
- (C) a força de arrasto será maior no experimento com água, no qual a velocidade do fluido é menor; e a força de empuxo será menor no experimento com água.
- (D) a força de arrasto será maior no experimento com água, no qual a velocidade do fluido é maior; e a força de empuxo será maior no experimento com água.
- (E) a força de arrasto será menor no experimento com água, no qual a velocidade do fluido é maior; e a força de empuxo será menor no experimento com água.

19 – [30 (ENADE 2014)]: Rotâmetro é um medidor de vazão de área variável, no qual um flutuador é arrastado pelo fluido para cima, dentro de um tubo cônico transparente, de modo que a velocidade do escoamento em torno do flutuador resulta em uma força de arraste que equilibra as forças atuantes no mesmo. Dessa forma, dependendo da vazão, o flutuador ira se localizar em uma certa posição relativa à escala, como ilustra a figura abaixo.

Sabendo que a força de arraste é proporcional à massa especifica do fluido, avalie as seguintes asserções e a relação proposta entre elas.

- I. Em um rotâmetro calibrado para a medição de vazão de água (massa especifica igual a 1 000 kg/m³), se for medida a vazão de um fluxo de óleo diesel (massa especifica igual a 850 kg/m³), a leitura de vazão na escala do rotâmetro será menor que a vazão real
 - **PORQUE**
- II. Com menor massa especifica, a velocidade para se obter o equilíbrio entre o peso e o arrasto será maior, posicionando-se o flutuador em uma parte inferior do tubo cônico, onde a área de passagem é menor que a necessária para uma mesma vazão de água.

A respeito dessas asserções, assinale a opção correta.

- (A) As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I.
- (B) As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.
- (C) A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
- (D) A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
- (E) As asserções I e II são proposições falsas.

20 – [21 (ENADE 2005)]: Analise a seguinte situação. Um veranista sente bastante calor ao chegar à sua casa de praia e se irrita ao constatar que o sistema de ar condicionado do seu quarto não está funcionando. Tentando solucionar o problema e resfriar o quarto, ele teve a ideia de ligar o frigobar que se encontra no interior do quarto, deixando sua porta aberta. As portas e janelas do quarto foram mantidas fechadas. Pela decisão do veranista, conclui-se que, ao longo do tempo, o quarto:

- (A) será resfriado, se o COP (coeficiente de eficácia) for maior do que 1,0.
- (B) será resfriado, se o COP for menor do que 1,0.
- (C) será resfriado, se o COP for igual a 1,0.
- (D) ficará com a mesma temperatura.
- (E) será aquecido.

21 – [17 (ENADE 2011)]: Considere a situação em que um inventor alega ter desenvolvido um equipamento que trabalha segundo um ciclo termodinâmico de potência. O equipamento retira 800 kJ de energia, na forma de calor, de um dado local que se encontra na temperatura de 1 000 K, desenvolve uma dada quantidade líquida de trabalho e descarta 300 kJ de energia, na forma de calor, para outro local que se encontra a 500 K de temperatura.

Nessa situação, a alegação do inventor é:

(A) correta.	pois a	eficiência :	de seu eai	ipamento	é de 50%	6 e é menor	que a eficiê	ncia teórico	a máxima.

- (B) incorreta, pois a eficiência de seu equipamento é de 50% e é maior do que a eficiência teórica máxima.
- (C) correta, pois a eficiência de seu equipamento é de 62,5% e é menor do que a eficiência teórica máxima.
- (D) incorreta, pois a eficiência de seu equipamento é de 62,5% e é maior do que a eficiência teórica máxima.
- (E) incorreta, pois a eficiência de seu equipamento é de 62,5% e é menor do que a eficiência teórica máxima.

22 – [26 (EPE 2014)]: Calor é transferido para uma máquina térmica a uma taxa de 75 MW. Considerando que o calor é rejeitado para uma fonte fria, a taxa de 45 MW, a eficiência dessa máquina térmica é:

- (A) 16%.
- (B) 25%.
- (C) 32%.
- (D) 40%.
- (E) 62%.

23 – [27 (EPE 2014)]: Para um refrigerador manter um espaço refrigerado a uma determinada temperatura, o calor é removido deste espaço a uma taxa de 348 kJ/min. A taxa de rejeição do calor para o ambiente em que está instalado esse refrigerador é de 468 kJ/min. Se a potência necessária para operar esse refrigerador é 2 kW, seu coeficiente de desempenho é:

- (A) 1,0.
- (B) 1,4.
- (C) 2.0.
 - (D) 2,9. (E) 3,7.

24 – [19 (ENADE 2005)]: Gases de exaustão de uma caldeira, com temperatura de 230 °C, podem ser utilizados para pré-aquecer o ar ambiente, com temperatura de 30 °C. O ar aquecido é fornecido para o queimador da caldeira através de um trocador de calor, com 70% de eficiência (efetividade). Igualando a vazão do ar a ser aquecido à dos gases de exaustão e considerando que os calores específicos são aproximadamente iguais, qual será a temperatura do ar aquecido?

- (A) 70 °C.
- (B) 100 °C.
- (C) 130 °C.
- (D) 170 °C.
- (E) 200 °C.

25 - [25 (EPE 2014)]: O ar no interior de um cilindro-pistão passa por um processo de expansão, indo do estado 1 ao estado 2. Considere que o ar se comporta como um gás ideal e que no estado inicial, estado 1, $P_1 = 1,6$ MPa e $V_1 = 26$ litros, e que, após a expansão, estado 2, $V_2 = 66$ litros. Qual a pressão no estado 2, em MPa?

- (A) P2 = 0.25.

- (B) $P_2 = 0.63$. (C) $P_2 = 0.92$. (D) $P_2 = 1.24$. (E) $P_2 = 1.59$.

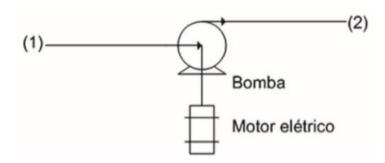

26 - [10 (ENADE 2011)]: Um centro de pesquisas está projetando um tanque cúbico para armazenar 4,76 kg de uma mistura saturada de líquido-vapor a 169,6 °C com um título de 85% e cujo volume específico, nessas condições, é de, aproximadamente, 210 dm³/kg. A transferência de calor para o tanque desde o estado inicial, no qual a pressão da mistura líquido-vapor saturada é 0,50 kgf/cm², até o estado final desejado, se dá a uma razão de 60 W. Necessita-se dimensionar a altura do tanque cúbico a ser construído. Considerando que o calor total transferido para o tanque durante o aquecimento foi de 9 117 kJ, concluiu-se que a altura do tanque e o tempo do processo são, respectivamente, iguais a:

- (A) 1,0 m e 42,2 horas.
- (B) 1,0 m e 152,0 horas.
- (C) 1,0 m e 422,0 horas.
- (D) 10,0 m e 42,2 horas.
- (E) 10,0 m e 152,0 horas.

27 – [35 (ENADE 2008)]: Uma panela de pressão cozinha muito mais rápido do que uma panela comum, ao manter mais altas a pressão e a temperatura internas. A panela é bem vedada, e a tampa é provida de uma válvula de segurança com uma seção transversal (A) que deixa o vapor escapar, mantendo, assim, a pressão no interior da panela com valor constante e evitando o risco de acidentes.

TABELA DE PRESSÃO ABSOLUTA DA ÁGUA SATURADA EM FUNÇÃO DA TEMPERATURA

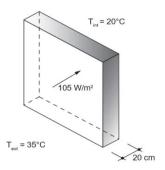
Temp. (°C)	Pressão (kPa)	Temp. (°C)	Pressão (kPa)	Temp. (°C)	Pressão (MPa)
0,01	0,6113	50	12,350	100	0,10135
5	0,8721	55	15,758	105	0,12082
10	1,2276	60	19,941	110	0,14328
15	1,7051	65	25,033	115	0,16906
20	2,3385	70	31,188	120	0,19853
25	3,1691	75	38,578	125	0,2321
30	4,2461	80	47,390	130	0,2701
35	5,6280	85	57,834	135	0,3130
40	7,3837	90	70,139	140	0,3613
45	9,5934	95	84,554	145	0.4154



VAN WYLEN, G; SONNTAG, R.; BORGNAKKE, C. Fundamentos da Termodinâmica Clássica. 4. ed. São Paulo: Edgard Blücher, 2003. (Adaptado).

Considerando os dados fornecidos na figura e na tabela acima e uma situação em que a panela contém água saturada, a massa da válvula, em gramas, para garantir uma pressão manométrica interna constante de 100 kPa, e o correspondente valor aproximado da temperatura da água, em °C, são, respectivamente:

- (A) 4 e 100.
- (B) 4 e 120.
- (C) 40 e 100.
- (D) 40 e 120.
- (E) 400 e 100.


28 – [11 (ENADE 2011)]: Uma bomba de água é movida por um motor elétrico de 18 kW, cuja eficiência é de 90%. A vazão é de 40 litros por segundo. O diâmetro na tubulação é constante, a diferença das cotas entre os pontos (1) e (2) é desprezível e a perda de carga entre esses pontos corresponde a 5 mH₂O. As pressões manométricas na entrada e na saída da bomba são, respectivamente, 150 kPa e 400 kPa.

Considerando o peso específico da água $\delta = 10~000~\text{N/m}^3$ e a aceleração da gravidade $g = 10~\text{m/s}^2$, conclui-se que a eficiência da bomba é de:

- (A) 40%.
- (B) 50%.
- (C) 62%.
- (D) 74%.
- (E) 90%.

29 – [12 (ENADE 2014)]: Um ambiente termicamente confortável é uma das condições que devem ser consideradas em projetos de edificações. A fim de projetar um ambiente internos com temperatura de 20 °C para uma temperatura externa média de 35 °C, um engenheiro considerou, no dimensionamento, um fluxo de calor através de uma parede externa de 105 W/m², conforme ilustra a figura abaixo. A tabela a seguir apresenta os valores da condutividade térmica para alguns materiais de construção.

Material	Condutividade térmica λ (W.m ⁻¹ .K ⁻¹)
Concreto	1,40
Pedra natural	1,00
Placa de aglomerado de fibras de madeira	0,20
Placa de madeira prensada	0,10
Placa com espuma rígida de poliuretano	0,03

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15220-1: Desempenho térmico de edificações - Parte 1: Definições, símbolos e unidades. Rio de Janeiro, 2005, p. 8 (adaptado).

A fim de se obter a temperatura externa desejada, qual de ver o material selecionado, entre os apresentados na tabela acima, para composição da parede externa?

- (A) Concreto.
- (B) Pedra natural.
- (C) Placa de madeira prensada.
- (D) Placa com espuma rígida de poliuretano.
- (E) Placa de aglomerado de fibras de madeira.

 $30 - [49 \ (EPE\ 2014)]$: Um escoamento permanente, turbulento, de um fluido incompressível ocorre através de um conduto horizontal cuja área transversal da seção dobra de tamanho bruscamente. Sejam V_1 e V_2 as velocidade e A_1 e A_2 as áreas transversais antes e depois da expansão do conduto, respectivamente. Despreze as tensões de cisalhamento que agem nas paredes das duas seções, adote velocidade uniforme nas seções transversais ao escoamento e considere a aceleração da gravidade local igual a g. A expressão para a perda de carga devido à mudança brusca do tamanho da seção é:

(A)
$$h = \frac{V_1}{2g} \cdot \left(1 - \frac{A_1}{A_2}\right)^2$$
.

(B)
$$h = \frac{V_2}{g} \cdot \left(1 + \frac{A_1}{A_2}\right)^2$$
.

(C)
$$h = \frac{V_1^2}{2g} \times \left(1 - \frac{A_1}{A_2}\right)^2$$
.

(D)
$$h = \frac{V_2^2}{g} \cdot \left(1 + \frac{A_1}{A_2}\right)^2$$
.

(E)
$$h = \frac{(V_1 - V_2)^2}{2g} \cdot \left(1 - \frac{A_1}{A_2 - A_1}\right)^2$$
.