Comparação de Desempenho Entre As Formulações Singular e Hiper-singular do Método dos Elementos de Contorno

Nome: ENILENE REGINA LOVATTE
Tipo: Dissertação de mestrado acadêmico
Data de publicação: 29/05/2009

Banca:

Nomeordem decrescente Papel
CARLOS FRIEDRICH LOEFFLER NETO Orientador
FERNANDO CÉSAR MEIRA MENANDRO Examinador Interno
JULIO TOMÁS AQUIJE CHACALTANA Examinador Interno
WEBE JOÃO MANSUR Examinador Externo

Resumo: Neste trabalho apresentam-se as Formulações Singular e Hipersingular do Método de Elementos de Contorno e comparam-se seus resultados em problemas de campo escalar estacionários bidimensionais, governados pela Equação de Laplace. Nas formulações convencionais do Método dos Elementos de Contorno, uma atenção especial
deve ser dada às integrações singulares que aparecem nos núcleos das integrais de contorno, típicas do método. Esta atenção se redobra no caso de Formulações Hipersingulares. Com o tratamento adequado destas integrais é possível demonstrar-se que são convergentes no sentido do Valor Principal de Cauchy e podem ter seu tratamento simplificado diante de alguns procedimentos ligados à discretização e ao posicionamento dos nós funcionais típicos
do Método dos Elementos de Contorno. Embora as características de ambas as formulações já tenham sido apresentadas na literatura
especializada, muitas particularidades interessantes da formulação hipersingular não são bem conhecidas e devem ser mais bem avaliadas, especialmente com base em resultados comparativos com a formulação singular clássica. O objetivo deste trabalho é apresentar estas formulações integrais para a Equação de Laplace e seu devido tratamento numérico na forma mais simplificada, considerando as propriedades dos núcleos e da ordem dos elementos de contorno empregados na discretização do contorno. Comparando-se os resultados numéricos dos erros percentuais cometidos no cálculo do
potencial e sua derivada em exemplos de solução analítica conhecida, discute-se o desempenho de cada formulação, finalizando-se esta análise com a comparação com um exemplo referente a outro método numérico.

Acesso ao documento

Acesso à informação
Transparência Pública

© 2013 Universidade Federal do Espírito Santo. Todos os direitos reservados.
Av. Fernando Ferrari, 514 - Goiabeiras, Vitória - ES | CEP 29075-910